Real-time Reliable Simulation of Heat Transfer Phenomena
نویسندگان
چکیده
In this paper we discuss the application of the certified reduced basis method and the associated software package rbMIT c © to “worked problems” in steady and unsteady conduction. Each worked problem is characterized by an input parameter vector — material properties, boundary conditions and sources, and geometry — and desired outputs — selected fluxes and temperatures. The methodology and associated rbMIT c © software, as well as the educational worked problem framework, consists of two distinct stages: an Offline (or “Instructor”) stage in which a new heat transfer worked problem is first created; and an Online (or “Lecturer”/“Student”) stage in which the worked problem is subsequently invoked in (say) various in– class, project, or homework settings. In the very inexpensive Online stage, given an input parameter value, the software returns both (i) an accurate reduced basis output prediction, and (ii) a rigorous bound for the error in the reduced basis prediction relative to an underlying expensive high-fidelity finite element dis∗Corresponding Author cretization; as required in the educational context, the response is both rapid and reliable. We present illustrative results for two worked problems: a steady thermal fin, and unsteady thermal analysis of a delamination crack.
منابع مشابه
Three-dimensional modeling of transport phenomena in a planar anode-supported solid oxide fuel cell
In this article three dimensional modeling of a planar solid oxide fuel cell (SOFC) was investigated. The main objective was to attain the optimized cell operation. SOFC operation simulation involves a large number of parameters, complicated equations, (mostly partial differential equations), and a sophisticated simulation technique; hence, a finite element method (FEM) multiphysics approach ...
متن کاملNumerical Simulation of Laminar Convective Heat Transfer and Pressure Drop of Water Based-Al2O3 Nanofluid as A Non Newtonian Fluid by Computational Fluid Dynamic (CFD)
The convective heat transfer and pressure drop of water based Al2O3 nanofluid in a horizontal tube subject to constant wall temperature condition is investigated by computational fluid dynamic (CFD) method. The Al2O3 nanofluid at five volume concentration of 0.1, 0.5, 1.0, 1.5 and 2 % are applied as a non Newtonian power law and Newtonian fluid with experimentally measured properties of density...
متن کاملModeling and Simulation of Heat Transfer Phenomenon in Steel Belt Conveyer Sulfur Granulating Process
Complex heat transfer phenomena (including unsteady state conduction, convection and solidification processes) occur in steel belt conveyer sulfur granulating method. Numerical simulation of this technique is performed via a comprehensive and multifaceted one dimensional model. Since the air situated between the adjacent sulfur pastilles is essentially stagnant, therefore, the surface tempe...
متن کاملEvaluation of Eulerian Two-Fluid Numerical Method for the Simulation of Heat Transfer in Fluidized Beds
Accurate modeling of fluidization and heat transfer phenomena in gas-solid fluidized beds is not solely dependent on the particular selected numerical model and involved algorithms. In fact, choosing the right model for each specific operating condition, the correct implementation of each model, and the right choice of parameters and boundary conditions, determine the accuracy of the results i...
متن کاملCalculation of Heat Transfer Coefficient of MWCNT-TiO2 Nanofluid in Plate Heat Exchanger
The objective of the present study is the synthesis of MWCNT-TiO2 hybrid nanostructures by solvothermal synthesis method with TiCl4 as precursor. The heat transfer enhancement due to the use of MWCNT-TiO2 nanofluid was investigated. As-prepared hybrid materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that MWCNTs were uniformly dec...
متن کامل